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2.0 INTRODUCTION TO BOOTSTRAPPING

2.1 Introduction

There are a lot of valuable statistical methods that are p ract i a l l y
guaranteed to work well if the data are approximately normally distributed a n d
we are mainly concerned with linear functions of random variables. As w a s
remarked in Chapter 1, the mean or average of a data set is a l i n e a r
combination of random variables, and the central limit theorem says that w e
can expect means to converge on normality as the sample size inc reases .
However, ecologists often are forced to use small samples. Very often we w a n t
to consider ratios of random variables, which are definitely n o n l i n e a r
combinations, and difficult to deal with in any consistent manner. M a n y
models of importance in ecological studies contain products, ratios a n d
exponents, and are simply not susceptible to a standard statistical analysis i n
terms of the available theory.

A relatively new development in statistical methodology offers a w a y
out of this dilemma. The technique is called "bootstrapping", which, a c c o r d i n g
to Efron and Tibishirani (1993) was named from the phrase "to pull oneself u p
by one's bootstraps", i.e., to accomplish a physical impossiblity. Efron a n d
Tibishirani (1993:56) note that the bootstrap was introduced by Efron in 1979,
making it quite a recent development in contrast to many other stat ist ical
techniques. It was preceded by "jackknifing" which was originated b y
Quenouille (1956) as a way to study bias in estimators, but named by J o h n
Tukey (1958) due to its all-purpose applicability, like one's handy jackknife. A
related topic is the use of the "delta method" to estimate variances for est imates
based on complicated models. We will touch on these latter two methods la te r ,
but will mainly depend on bootstrapping as the principal tool for h a n d l i n g
difficult problems.

One of the nice things about bootstrapping is that it is simple to app ly ,
so long as one has access to a computer. Detailed application requires access t o
a desk computer and some knowledge of a programming language. However ,
bootstrapping can be done in EXCEL, as used here. There are s e v e r a l
programming languages that can be used for bootstrapping. Most of t h e
examples given here were also done in EXCEL, which has a random n u m b e r
generator in the statement RANDBETWEEN(N1,N2) where N1 and N2 r e p r e s e n t
the range of the random numbers to be generated. Be sure the ANALYSIS
TOOLPAK is loaded before attempting the EXCEL versions of bootstrapping. Pu l l
down the Tools menu and use the add-ins element to find the Analysis Toolpak.
Details of use vary with the version, so you may need to use the “ h e l p ”
function on occasion.

2.2 The mechanics of bootstrapping

 Bootstrapping is easy to apply. The process for approximating t h e
standard error of a mean is illustrated in Fig. 2.1. An original data se t
containing n items (here n = 10) is randomly sampled with replacement B
times, with each sample containing exactly n itemsp. Four of these B samples
are shown above the original data set in Fig. 2.1. Note that an individual v a l u e
from the original data set, such as 106 may appear repeatedly in a boots t rap
sample. Each of the B bootstrap samples is averaged, as shown above t h e
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individual samples. This is the bootstrap rep l i ca t ion .   We then use these B  
replicate values to compute the standard error of the mean. The equation i s

exactly the same as that for calculating a variance, namely s2 = 
Σ ( x i  -  x- )2

n - 1   .

However, Efron and Tibishirani use a different notation to d i s t ingu i sh
bootstrap variables from the original data, using x*1,x* 2, ..., x*B to denote t h e
vectors containing the bootstrap samples of n observations (i.e., the four sets
of bootstrap samples of 10 items each shown in Fig. 2.1). Thus the f i r s t
bootstrap sample is
                            x*1 =(203,203,106,106,106,160,106,8,301,160).
The original data is represented by the vector x = (x1,x2, ... ,xn) .

...
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Fig. 2.1 The bootstrapping scheme for estimating a standard error. An o r i g i n a l
data set containing n items is randomly sampled B times with r e p l a c e m e n t
using samples of size n. Each such bootstrap sample is averaged, and t h e s e
means are used to estimate the standard error of the mean of the original da ta
set.

The quantity s(x*1) denotes a statistic computed from the c o r r e s p o n d i n g
bootstrap sample. In this case s(x*1) is the average of the first boo ts t rap
sample, 145.9. Using the bootstrap notation the standard error of the m e a n
estimated by bootstrap sampling is written as:

                                     se^  boot = { Σ [s(x* b) - s(.)] 2

B-1  } 1/2                            
(2.1)
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where the summation runs from b = 1 to B, and s(.) represents the mean  of t h e
bootstrap sample, i.e., Σx* b/B,  where again the summation runs from b = 1 to B.
The important thing to remember here is that s(x*b) represents the mean o f
the bth bootstrap sample, so that s(.) is the average of B such averages. Note,
too, that the standard error of a set of random variables is computed as s/n1/2,
but here we are computing the standard deviation of a set of means and this i s
the standard error of the mean (i.e., don't make the mistake of dividing by t h e
square root of B).

The first few columns of an EXCEL worksheet used to bootstrap the da ta
of Fig 2.1 follow. The first row shows the assignment of a serial number to t h e
original data items, while the original data appear in the second row. The n e x t
10 rows list random numbers from 1 to 10 obtained from the s ta temen t
RANDBETWEEN(1,10). The next set of numbers are random samples, w i t h
replacement, from the original data set.

ITEM NUMBER 1 2 3
DATA 1 3 1 0 6 2 0 3

1 6 8 2
2 9 7 6

RANDOM 3 1 3 1 0
NUMBERS 4 8 9 9

5 2 2 1
6 5 6 1
7 3 8 9
8 1 2 6
9 7 2 2

1 0 3 2 8

1 8 6 1 1 0 6
BOOTSTRAP 2 1 1 6 7 8
SAMPLES 3 1 3 2 0 3 3 0 1

4 6 1 1 1 1 1
5 1 0 6 1 0 6 1 3
6 1 6 0 8 1 3
7 2 0 3 6 1 1 1
8 1 3 1 0 6 8
9 6 7 1 0 6 1 0 6

1 0 2 0 3 1 0 6 6 1

SUM 8 4 5 8 3 5 6 3 8
MEAN 84.5 83.5 63.8

These are obtained by using a "table lookup" function in EXCEL. It can b e
explained by referring to the following formulas for the first column.
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ITEM NUMBER 1
DATA 1 3
1 =RANDBETWEEN(1,10)
2 =RANDBETWEEN(1,10)

RANDOM 3 =RANDBETWEEN(1,10)
NUMBERS 4 =RANDBETWEEN(1,10)

5 =RANDBETWEEN(1,10)
6 =RANDBETWEEN(1,10)
7 =RANDBETWEEN(1,10)
8 =RANDBETWEEN(1,10)
9 =RANDBETWEEN(1,10)
1 0 =RANDBETWEEN(1,10)

1 =HLOOKUP(C3,$C$1:$L$2,2,FALSE)
BOOTSTRAP 2 =HLOOKUP(C4,$C$1:$L$2,2,FALSE)
SAMPLES 3 =HLOOKUP(C5,$C$1:$L$2,2,FALSE)

4 =HLOOKUP(C6,$C$1:$L$2,2,FALSE)
5 =HLOOKUP(C7,$C$1:$L$2,2,FALSE)
6 =HLOOKUP(C8,$C$1:$L$2,2,FALSE)
7 =HLOOKUP(C9,$C$1:$L$2,2,FALSE)
8 =HLOOKUP(C10,$C$1:$L$2,2,FALSE)
9 =HLOOKUP(C11,$C$1:$L$2,2,FALSE)
1 0 =HLOOKUP(C12,$C$1:$L$2,2,FALSE)

SUM =SUM(C14:C23)
MEAN =C25/10

The statement HLOOKUP(C3,$C$1:$L$,2,FALSE) specifies a horizontal l ookup
table (VLOOKUP permits a vertical lookup table). The first entry is the c o l u m n
entry for the value to be looked up in the table, i.e., C3 denotes a r a n d o m
number entry, for which we need to find the corresponding entry in t h e
original data row. The lookup table is specified by the array, $C$1:$L$1 i n
which the first row is the index value corresponding to a data entry in t h e
next row. The subsequent value in HLOOKUP is the row containing the data t o
be returned by the HLOOKUP function, and the final entry ("FALSE") i n s u r e s
that the function returns the exact value required (using "TRUE" would p e r m i t
returning the value nearest in numerical magnitude to a lookup entry). As
with any of the more complex functions in EXCEL, a little practice will m a k e
the role of the individual entries clear. An important proviso with t h e
HLOOKUP and VLOOKUP functions is that the lookup table must be in the f i r s t
rows (or first columns for VLOOKUP) of the spreadsheet. The last entries a b o v e
give the sums and means of the bootstrap samples. The means are used i n
eq.(2.1) to calculate the bootstrap standard error. Readers should u n d e r s t a n d
that the example used here is mainly intended to demonstrate the a p p r o a c h .
The best estimate of a standard error of a set of numbers is that calculated b y
the usual formula, i.e., from

S.E.2 = 
Σ(xi  - x

- )2

n ( n - 1 )   .
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Bootstrapping is used to calculate standard errors for more complex functions,
for which a direct estimate of a variance is not available from statistical
t h e o r y .

Example 2.1. The original data of Fig. 2.1:
13,106,203,131,160,8,67,61,11,301 represent data on survival times in
days. They can be considered to come from an experiment on the effect of
some treatment on survival of experimental animals (whereupon there
should be a corresponding set of data from a control group) or the
survival times of a set of radio-tagged wild animals. It is a small
sample, but this is common, inasmuch as there is increasing public
pressure to reduce experimental use of live animals, and collecting data
from wild animals is expensive and can be quite difficult. We would thus
like to extract as much information as possible from the data. The data
in Table 2.1 are from an EXCEL worksheet that computes the bootstrap
standard error. It shows the first 10 columns of a total of 50, which is
likely the minimum size that should be used to demonstrate behavior of
bootstrapping. In preparing such spreadsheets, one should change the
calculation mode from automatic to manual (in the TOOLS menu, under
OPTIONS or PREFERENCES depending on the version of EXCEL) while building
the worksheet. The calculate command can then be used to see how the
result varies from run to run.

2.3 Empirical probability distributions

 The probability distribution of a random variable, X, is any comple te
description of the probabilistic behavior of x. In coin-tossing with a " fa i r "
coin, there are two possibilities, each occurring with probability 1/2. I n
rolling a die, there are 6 outcomes, each having Pr{x = k} = 1/6 for k = 1,2,3,4,5,
or 6. It is convenient to define the sample space, SX, as a list of poss ib le
outcomes. Thus for a fair die, Sx = {1,2,3,4,5,6} and we assign probability 1/6 t o
each event in the sample space. Consider the binomial distribution w h i c h
assigns a probability to each sample point in the sample space {0,1,2,3, ... , k, ... ,
n} but these probabilities depend on the parameter, p, of the distribution. T h e
binomial distribution is:

                                    Prob{xi = k} = fk = (n
k  )pk(1-p)n-k                                        (2.2)

where (
n
k  ) is evaluated as  

n !
(n-k) !k !  , in which, for example, 5! (read as "five

factorial") is calculated as 5x4x3x2x1 = 120.
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Table 2.1 Sample from bootstrapping the data of Fig. 2.1.

ITEM NUMBER 1 2 3 4 5 6 7 8 9 1 0
DATA 1 3 1 0 6 2 0 3 1 3 1 1 6 0 8 6 7 6 1 1 1 3 0 1

1 7 8 1 6 5 4 6 2 8 6
2 1 0 1 0 3 8 1 0 1 0 2 4 3 2

RANDOM 3 2 7 4 1 0 7 4 3 5 1 0 1 0
NUMBERS 4 4 1 4 4 5 6 8 1 0 3 7

5 8 6 1 6 7 8 5 3 1 4
6 9 7 9 4 4 9 1 7 6 6
7 1 5 6 9 1 0 3 5 3 9 7
8 1 8 3 2 1 0 1 0 1 0 1 1 7
9 5 2 6 6 9 1 0 1 1 0 1 0 6

1 0 2 6 3 8 7 3 2 2 2 6

1 6 7 6 1 1 3 8 1 6 0 1 3 1 8 1 0 6 6 1 8
BOOTSTRAP 2 3 0 1 3 0 1 2 0 3 6 1 3 0 1 3 0 1 1 0 6 1 3 1 2 0 3 1 0 6
SAMPLES 3 1 0 6 6 7 1 3 1 3 0 1 6 7 1 3 1 2 0 3 1 6 0 3 0 1 3 0 1

4 1 3 1 1 3 1 3 1 1 3 1 1 6 0 8 6 1 3 0 1 2 0 3 6 7
5 6 1 8 1 3 8 6 7 6 1 1 6 0 2 0 3 1 3 1 3 1
6 1 1 6 7 1 1 1 3 1 1 3 1 1 1 1 3 6 7 8 8
7 1 3 1 6 0 8 1 1 3 0 1 2 0 3 1 6 0 2 0 3 1 1 6 7
8 1 3 6 1 2 0 3 1 0 6 3 0 1 3 0 1 3 0 1 1 3 1 3 6 7
9 1 6 0 1 0 6 8 8 1 1 3 0 1 1 3 3 0 1 3 0 1 8

1 0 1 0 6 8 2 0 3 6 1 6 7 2 0 3 1 0 6 1 0 6 1 0 6 8

SUM 9 6 9 8 5 2 9 2 4 8 2 6 1 5 6 6 1 6 5 1 1 1 3 1 1 5 9 1 1 2 2 0 7 7 1
MEAN 96.9 85.2 92.4 82.6 156.6 165.1 113.1 159.1 1 2 2 77.1

For convenience in discussing bootstrapping, we can describe a
probability distribution as F{f1,f2,f3, ... ,fk  ... ,fN} where fi  is the l i m i t i n g

frequency of the ith event. For a single die, we infer that fi  = 1/6, and would
expect to eventually come very close to that value, given enough rolls of t h e
die. If we determine fi from observations, then it can be considered to be a n
empirical probability distribution. Instead of rolling dice, we can set up a
spreadsheet using RANDBETWEEN(1,6), copy this down through, say, 1,000 cel ls,
and tabulate the outcomes by using the histogram function in the data ana lys i s
menu under TOOLS. This gave the following results:

Bin Frequency Proportion F ( x )
1 1 8 1 0.1810 0.1810
2 1 7 9 0.1790 0.3600
3 1 6 2 0.1620 0.5220
4 1 7 2 0.1720 0.6940
5 1 5 2 0.1520 0.8460
6 1 5 4 0.1540 1.0000

TOTAL 1 0 0 0



2.7

The column under proportion gives the empirical frequency distribution, with
the corresponding cumulative frequency distribution being shown under
F(x).

It is necessary to note that, in mathematical statistics, F(x) represents
the cumulative probability distribution function, F(xo) = Pr{x <  xo}.The table   

above provides an example. We will use the description F^ {f 1,f2,f3, ... ,fk ... ,fN}
for a finite number of events as a handy way to represent an empirical
probability distribution in discussing bootstrapping. The "hat",^, over a symbol
means that the quantity is an estimate of the true, but unknown, value, F. The
cumulative, F(xo) = Pr{x <  xo}, will mainly be used here in simulations. It is   
important to remember that the sum of the frequencies in F{f1,f2,f3, ... ,fk  ...
,fN } is always unity, described as Pr{xεS} = Σ fk = 1, where "ε" means "contained
in " .

2.4 Sample sizes for bootstrapping

 Bootstrapping is a resampling procedure, that is, we take repea ted
samples of the original data set, calculate values of some statistic s(x*) and u s e
these to infer something about the true, but unknown value of some
parameter. In the example used thus far, the statistic was the standard error o f
the mean. How many bootstrap replications are needed? Efron and T ib i sh i ran i
[1993: Eq.(6.9)] give a formula for examining the effect of varying sample size,
but also indicate that, in their experience, B = 200 is usually adequate f o r
estimating the standard error, while B = 50 may provide useful information. I n
the problems I have dealt with thus far by using bootstrapping, I tend to use B
= 100 for exploring data and debugging programs, and B = 1,000 or 2,000 for t h e
published result. With desktop computing so cheap, one might as well resort t o
"overkill" unless the statistic being bootstrapped is very complicated a n d
requires a lot of computing time. However, this choice of B > 1,000 is a lso 
largely driven by the fact that larger samples are needed to compu te
confidence limits by bootstrapping, as we'll see in the next section. W h e n
making calculations using EXCEL in some older versions one can only get abou t
250 bootstraps in the horizontal plane, so it is desirable to use VLOOKUP and se t
up the table in the vertical plane, whereupon it is possible to get 2,000 or m o r e
bootstraps for confidence limits. If more bootstraps are needed, one can c o p y
off data to another sheet and recalculate, copy off those results, a n d
recalculate again. Large samples can thus be obtained. However, as no ted
above, 2,000 is usually adequate for confidence limits.

2.5 Percentile confidence limits

 Calculating confidence limits by bootstrapping can be ex t reme ly
simple, if the percentile method is used. Follow the same process demonst ra ted
in Fig. 2.1, generating at least 1,000 bootstraps (I tend to use 2,000 if c o mp u t i n g
doesn't take too long), store the data in a file, arrange it in numerical o rde r ,
and count in α B/2 observations from both ends, where α  is the c h o s e n
"significance level". These are the percentile confidence limits. A l t h o u g h
there is nothing in the underlying theory that dictates a choice, most
biologists tend to use α  = 0.05, for 95% confidence limits.
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To accomplish this in EXCEL, use VLOOKUP and put the data in the first 2
columns, the same number of  random numbers in the third row as there a r e
data points, and the corresponding lookup values in the fourth row. Calculate
the function being bootstrapped in subsequent rows. You can then order t h e
data and count in from both ends for confidence limits. In this case, t h e
function being bootstrapped is simply the mean. Confidence limits a r e
obtained by ordering this column (use SORT in the DATA menu of EXCEL) a n d
counting in from the ends of the ordered data. To use α  = 0.05 on 1,000
bootstraps, one would count in 25 observations from each end. In this example,
the approximate 95% confidence limits were 55.4 to 169 around the mean o f
106.1 of the original data, based on 1,000 bootstraps. Using a BASIC program t o
do the bootstrapping is faster and requires less effort once the p r o g r a m m i n g
is done. Results of 2,000 bootstraps from a BASIC program (Fig. 2.2) g a v e
confidence limits of about 55-164.

As noted previously, EXCEL will accomodate at least 2,000 bootstraps i n
the vertical arrangement. However, if an older (and thus slower) computer i s
used, it may be best to do only 200 bootstraps at a time. That is, set up t h e
operation as shown on the attached sheet, run 200 bootstraps, and copy t h e
results to a second worksheet. Do this 5 times (or 10 if you want 2,000
bootstraps) and then order the data on the second worksheet to locate t h e
confidence limits.

Students should review normal theory confidence limits in the statistics
text of their choice at this point. Under normal theory, we would calculate a
standard error of the mean of the original data of Fig. 2.1 (mean = 106.1),
getting s = 95.33, and S.E. = 95.33/(101/2) = 30.14, and calculate 95% confidence
limits of + 1.96 SE. I tend to use 2 rather than 1.96 for convenience, and a little   
extra margin. Using 2 S.E. gives approximate 95% limits of 46 to 166. Survival
data generally follow a highly skewed distribution, and the sample variance
tends to vary appreciably. In this case, the limits are so wide that the data don't
give us a very good notion of average survival time.

Statistics books recommend transforming skewed data in order t o
approximate normality. One then produces normal-theory confidence limits a s
above, and transforms back to the original scale. It can, however, be a
considerable chore to find a normalizing transformation suitable for the da ta
at hand. Further, the small sample of Example 2.1 simply does not s u p p l y
enough information to evaluate possible transformations. It is thus re a s s u r i n g
that Efron and Tibishirani (1993: Chap. 13) indicate that the percentile me thod
automatically supplies limits that would be obtained under normal theory if w e
knew the proper transformation to normalize the data.
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Fig. 2.2 Frequency plot of 2,000 bootstraps of the original data of Fig. 2.1,
showing mean of the original data (heavy central vertical line), and 95%
confidence limits (lighter lines to right and left) from the bootstrap p e r c e n t i l e
method for calculating confidence limits. These limits are at about 55 and 164
for the data shown. Note that the appearance of these graphs will v a r y
somewhat as this is a sampling procedure.

2.6 Regression models and parametric bootstrapping

Regression models provide extremely valuable tools in ecological
studies. Many investigators use  regressions without giving much thought t o
the matter, and may thus report some erroneous results without realizing t h a t
this is possible. Regression models are classified as linear and n o n l i n e a r .
Linear models are most commonly used, with the main example being y = α  +
βx, where α  denotes the "intercept" and β the "slope". Ecologists also u s e
multiple regression models with two or more x-values, e.g., y = α  + β1x1 + β2x2,

and may also use multiple regression models like y = α  + β1x1 + β2x2
2. These a r e

both linear models, being "linear in the coefficients", but a version like y = α  +

β1x1 + β2x2
γ is nonlinear.  A frequently encountered nonlinear model is  

y =αe-βx. This model can, however, be transformed into a linear model b y
taking logarithms (usually to base e) giving logey = logα  - βx. The model y = α  +

β1x1 + β2x2
γ is said to be intrinsically nonlinear, inasmuch as a s imp le

transformation will not convert it to a linear version (unless, of course, w e
know or assume we know γ). Dealing with intrinsically nonlinear models c a n
be difficult, and they are most often fitted with nonlinear least -squares.
Programs are available for fitting by nonlinear least-squares.

Regression models may be bootstrapped in exactly the same way a s
shown in Fig. 2.1, except that now the original data will consist of x,y pa i r s ,
and the statistic computed from bootstrap replications consists of p a i r e d
estimates of α  and β, rather than the mean as used in the example of Fig. 2.1.
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How these sets of paired estimates are treated depends on the purpose of t h e
study. Often the main interest is in estimates of β, but we may also want to se t
confidence limits on an estimate of some value of x computed from t h e
estimates of α  and β . Texts on regression analysis are available; one of the m o r e
widely used is that of Draper and Smith (1998), and most basic statistics texts
give a good deal of attention to regression models. To set confidence limits o n
some regression estimate by bootstrapping, one simply needs to follow t h e
procedure presented above, with the "statistic" being the estimate of i n t e r e s t
in the study at hand.

The chief problem for ecologists in this approach is the usual one -- sma l l
sample sizes. With smallish samples, bootstrapping pairs may give some
strange and variable results. We will thus need to consider p a r a me t r i c
bootstrapping. The procedure again is simple. One fits a regression model t o
the original data, calculates residuals about the fitted line, and bootstraps t h e
residuals. Consider the result of fitting a simple linear regression to n o r i g i n a l
pairs of x,y observations. The outcome is a fitted regression line, denoted as

y i
^   = a +bxi, where a and b represent the estimates of α  and β, and there are n
pairs of original data. The residuals about regression are calculated as:

                                                       ei = ŷ i - yi            (i = 1,2,3, ...., n)                   (2.2)

where  ŷ i  is calculated from the fitted line, yi
^   = a +bxi. We now bootstrap t h e

residuals, taking repeated random samples with replacement of n observa t ions
from the residuals, add these residuals to the fitted regression line to get a n e w
set of n values of yi . Combined with the original set of x-values ( u n c h a n g e d
throughout) these new pairs constitute the bootstrap samples of Fig. 2.1. We
then calculate the bootstrap replication by fitting a new regression line to t h e
bootstrap sample. Of course, if we are only interested in, say, the slopes, b, t h e n
only that calculation needs to be carried out. The only tricky part is t o
remember that the new values of yi  are computed from the ith value of xi , so
that the same residual (ei ) may be associated with several values of xi ,
depending on the random selection. That is, the new set of yi  values i s
computed from:
                                            yi = a + bxi + ei     (i = 1,2,3, ..., n)                             (2.3)

with a and b coming from the regression line fitted to the original data and t h e
values of ei come from a random sample with replacement of the n data po in t s
generated by eq.(2.2). Students should repeat the calculations shown below t o
fix the scheme in mind. EXCEL will produce fitted values (check the “ res idua ls ”
box) which can be used to construct bootstrap samples by adding them to t h e
ei.

Example 2.2 Parametric regression bootstrapping.

For simplicity, we will suppose that we want 95% confidence limits on
the slope, β, of a regression line. The slope estimate is calculated as:

                               b = β̂   = 
Σ(xi  -  x

_
) ( y i  -  y

_
)

Σ ( x i  -  x
_

)2
      (i = 1,2,3, ..., n)               (2.4) 
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and the intercept estimate  is a = â  = y
_

  - bx
_

 .

STEP 1 Compute a regression line from the original data (EXCEL does
this for you):

b = =  
Σ(xi  -  x

_
) ( y i  -  y

_
)

Σ ( x i  -  x
_

)2
   =  

325.181239
630.5   = 0.5157

 a =  y
_

  - bx
_

  = 16.725 - (0.5157)(20.5) = 6.1525

ŷ   = 6.1525 + 0.5157x     Regression line from original data

STEP 2 Calculate the deviations  ei = ŷ i - yi
              Original data

      i         xi           yi              y
^ i      ei  = ŷ i - yi

1 1 0 12.672 11.31 1.362
2 1 2 8.9391 12.3415 - 3 . 4 0 2
3 1 4 13.934 13.373 0.561
4 1 5 16.377 13.8888 2.488
5 1 7 13.252 14.9203 - 1 . 6 6 8
6 2 1 19.121 16.9833 2.137
7 2 3 17.821 18.0148 - 0 . 1 9 4
8 2 8 18.879 20.5936 - 1 . 7 1 5
9 3 0 21.047 21.6251 - 0 . 5 7 8

1 0 3 5 25.213 24.2038 1.009
STEP 3 Draw random samples of 10 with replacement from the ei:

     i             ei               Random samples with replacement from the ei
1 1.362 - 0 . 1 9 3 6 0.5607 - 1 . 6 6 8 1 - 0 . 5 7 7 6 - 3 . 4 0 2 4 1.0091
2 - 3 . 4 0 2 - 0 . 5 7 7 6 2.4879 - 0 . 1 9 3 6 - 0 . 1 9 3 6 1.3618 - 3 . 4 0 2 4
3 0.561 - 1 . 7 1 5 0 - 1 . 7 1 5 0 1.0091 - 3 . 4 0 2 4 1.0091 0.5607
4 2.488 0.5607 1.3618 2.4879 - 0 . 1 9 3 6 - 3 . 4 0 2 4 1.3618
5 - 1 . 6 6 8 1.3618 - 0 . 1 9 3 6 - 1 . 7 1 5 0 - 0 . 1 9 3 6 1.0091 2.1373
6 2.137 - 1 . 6 6 8 1 - 1 . 6 6 8 1 1.3618 - 0 . 5 7 7 6 1.0091 1.3618
7 - 0 . 1 9 4 2.1373 - 0 . 1 9 3 6 0.5607 - 1 . 6 6 8 1 - 3 . 4 0 2 4 - 3 . 4 0 2 4
8 - 1 . 7 1 5 - 0 . 1 9 3 6 1.0091 2.4879 - 1 . 7 1 5 0 - 3 . 4 0 2 4 - 3 . 4 0 2 4
9 - 0 . 5 7 8 - 1 . 7 1 5 0 - 0 . 5 7 7 6 1.3618 1.3618 2.4879 0.5607

1 0 1.009 1.3618 - 1 . 6 6 8 1 1.3618 1.0091 - 1 . 7 1 5 0 2.1373
STEP 4 Add the random samples of ei to the predicted regression line to
obtain new sets of yi:

       i           xi          ŷ i            ŷ  i  + random samples with replacement from the ei
1 1 0 11.31 11.1164 11.8708 9.6419 10.7325 7.9076 12.3192
2 1 2 12.342 11.7640 14.8294 12.1479 12.1479 13.7033 8.9391
3 1 4 13.373 11.6580 11.6580 14.3822 9.9706 14.3822 13.9338
4 1 5 13.889 14.4495 15.2506 16.3766 13.6952 10.4864 15.2506
5 1 7 14.92 16.2821 14.7267 13.2053 14.7267 15.9294 17.0576
6 2 1 16.983 15.3152 15.3152 18.3451 16.4057 17.9924 18.3451
7 2 3 18.015 20.1521 17.8212 18.5755 16.3467 14.6124 14.6124
8 2 8 20.594 20.3999 21.6027 23.0814 18.8786 17.1911 17.1911
9 3 0 21.625 19.9101 21.0475 22.9868 22.9868 24.1129 22.1858

1 0 3 5 24.204 25.5656 22.5357 25.5656 25.2130 22.4888 26.3411
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STEP 5 Calculate regression slopes for each of these new sets of
"data", using the same set of xi. This gives the values,
0.542,0.443,0.608,0.582,0.513, and 0.520. In practice, of course, one
would calculate a large set of such estimates, 1,000 or more. The
frequency distribution of these values then provides the basis for
confidence limits, as calculated previously for means.

A generalized summary of the steps in parametric bootstrapping is as follows:

1) Compute estimates of the parameters of the model from the original data. I n
this case, the regression coefficients, a and b.

2) Calculate deviations, ei  = ŷ  i - y i ,  between the observed data ( yi ) and t h e

fitted model (ŷ i ) .
3) Draw B (at least 1,000 for confidence limits) random samples of n w i t h
replacement from this set of deviations.

4) Add these deviations to the  y^ i  to create the bootstrap replications.
5) Compute parameter estimates from each of these B sets of data.
6) Arrange these B estimates in a frequency distribution and count in α B/2
observations from each end to obtain (1-α )% confidence limits.

Calculations can be carried out in EXCEL by using the same a r r a n g e m e n t
as used in Sec. 2.5 to get confidence limits on a mean. The data to b e
bootstrapped are now the deviations from regression, and the boots t rap
operation proceeds in exactly the same manner. However, another stage has t o
be incorporated in which the bootstrapped deviations are added to t h e
predicted regression. These new regression values are then used to es t imate
the parameters of the regression equation. In the present example, only t h e
slope is calculated. This can be done by using the SLOPE function, w h i c h
returns the slope of two arrays. The x-values are the original values, while t h e
y-values are those in the body of the table. The 1,000 slope values were t h e n
ordered, and approximate 95% confidence limits obtained by counting up a n d
down 25 entries. The limits obtained from the EXCEL calculation (B = 1,000)
were 0.375 and 0.648. A calculation using a program written in BASIC w e r e
0.377 to 0.652. A plot of the results of 2,000 bootstraps computed by the BASIC
program appears in Fig.2.3.

Students should review normal theory regression calculations in Chap.
1.0 or in a statistics textbook. The variance about regression is calculated a s
follows:

                                    s2 =  
Σ(yi  - yi

^ )2

n  -  2    =

An estimate of the variance of the regression coefficient is given by:
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and this variance has the t-distribution with n-2 degrees of freedom u n d e r
normal theory. For 95% confidence limits in the present example, we look u p
the 0.025 (α /2) value of t with 8 degrees of freedom, finding it to be 2.306, a n d
calculate:

Upper 95% confidence limit = b + t(sb) = 0.516 + 2.306(3.952/630.5)1/2 = 0.698,

and the analogous lower limit is 0.333. Note that these limits are somewha t
wider than the 95% limits obtained by bootstrapping. A small sample of q u i t e
variable data is involved. It is always important to look at a plot of the data.
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Fig. 2.3. Frequency plot of 2,000 bootstraps created by a BASIC program. T h e
heavy central line shows the position of the regression slope calculated f r o m
the original data, while the lighter solid lines show the 95% boots t rap
confidence limits. Broken lines show normal 95% confidence limits ca lcu la ted
from the observed data.
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y = 6.1528 + 0.51574x   R^2 = 0.841

Fig. 2.4. Regression plot of the original data used in Example 2.2.
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Most "canned" statistical programs also give the correlation coef f ic ient ,
which is defined as:

                                     r =  = 
Σ ( x i  -  x

_
) ( y i  -  y

_
)

[ Σ ( x i  -  x
_

)2Σ ( y i  -  y
_

)2] 1 / 2
                    (2.7) 

In the present example, r = 0.917, and is reported by the graphics program t h a t
produced Fig. 2.3 as r2 = 0.841. A very serious problem for ecologists is t h a t
much of the data they encounter is not normally distributed, and routine u s e
of statistical packages without examining the assumptions or studying the da ta
can lead to important errors in interpreting the data. Bootstrapping provides a
way to examine the data without the normal theory assumptions, and t h u s
helps to avoid blunders. The above set of regression data does conform to t h e
normal theory model, so it is worthwhile to look at another example from a
different source for contrast. The basis for claiming conformity to n o r m a l
theory is that the data were constructed using normally distributed errors.

Example 2.3. A regression estimate of survival rate. As a further
example, we consider a common use of regression methods. Many
investigators are interested in estimating survival rates. Suppose we
observe 100 marked animals over 10 years, and tally the number of
survivors at the end of each year. If the probability of survival holds
constant from year to year and animal to animal, then we can consider
that the expected number surviving x years is just E(n) = Npx, where N
is the number originally marked and p is the probability of surviving a
year. We might then use a model, yi = Nsx, where yi is the number

observed at the end of the xth year and s is the survival rate. Taking
logarithms gives:

                                          log yi = log N +x log s                                            (2.8)

and an easy approach is just to fit a simple linear regression equation,
y = a + bx, where b = log s, and use eb to estimate s. An example of
such a data set follows:

Year Survivors Log survivors
1 8 9 4.48864
2 8 3 4.41884
3 7 4 4.30407
4 6 8 4.21951
5 6 5 4.17439
6 6 0 4.09435
7 5 5 4.00733
8 5 1 3.93183
9 4 8 3.87120

1 0 3 8 3.63759

Plotting log survivors against year gives the following graph:
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y = 4.5838 - 8.5277e-2x   R^2 = 0.975

Fig. 2.5. Logarithms of the number of animals surviving at the end of
each year regressed against time in years.

Using normal linear regression theory as in the previous example
gives a slope of -0.08528 with 95% confidence limits of -0.0742 to -
0.0963, and translating these back to a survival rate and confidence
limits gives e-0.08528 = 0.918 with approximate 95% confidence limits of
0.908 to 0.928.  A run of 2,000 bootstraps (parametric regression) gave
the following frequency distribution, and 95% confidence limits of -
0.09381 and -0.07717, which translate to an annual survival range of
0.910 to 0.926.  The bootstrapping was done with a BASIC program, but
could have been conducted in EXCEL, just as in the previous example.
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Fig. 2.6. Results of 2,000 parametric regression bootstraps for survival
data. Bold central line shows the regression survival estimate (0.928)
and solid lines the bootstrap 95% confidence limits. Broken lines are
the 95% confidence limits obtained from normal regression theory.
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The bootstrap limits appear to be a little "tighter" than the
normal theory limits. How can we determine which method is right? One
approach is to use "Monte Carlo" methods, which in this case amount to
running many stochastic simulations of survival data, and determing
which of the two choices for calculating confidence limits gives the
best "coverage", i.e., do the calculated confidence limits include the
true survival rate in 95% of simulated cases?

Example 2.4. The correlation coefficient. The correlation coefficient
(r) calculated as in eq.(2.7) is widely used, along with the assumption
that a transformation to:

z = 0.5 loge
1+r
1 - r                                                   (2.9) 

is normally distributed with expected value

                                                       µ = 0.5 loge 
1+ρ
1-ρ   and variance 

1
n - 3 .  

Approximate 95% confidence limits are obtained from z + 2 {
1

n - 3 }1 / 2 . Thus   

in Example 2.2, we had r = 0.917 which is transformed to:

 z = 0.5 loge{
1.917
.083  } + 2 [

1
7 ]1 / 2  or z1 = 2.326 and z2 = 0.814. These confidence   

limits for the transformed variable are usually transformed back by
iteritive solutions of eq. (2.9), i.e., we find r1 and r2 from:

                               2.326 = 0.5 loge 
1+r

1 - r   and 0.814 = 0.5 loge 
1+r

1 - r  ,

which gives 95% confidence limits on r as 0.67 to 0.98. If we resort to
bootstrapping, then the 2000 bootstraps used to produce Fig. 2.3 (values
of r were computed at the same time that values of b were calculated)
gave approximate 95% confidence limits of 0.86 to 0.98, essentially the
same upper limit, but an appreciably higher lower limit. A graph of the
results follows:
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Fig. 2.7. Results of 2,000 bootstraps for the correlation coefficient of
the regression data of Example 2.2. Heavy line shows correlation
coefficient calculated from the original data, while lighter lines are
approximate 95% confidence limits from bootstrapping.
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Clearly, the bootstrapped values of the correlation coefficient
are quite skewed, but this is the situation with respect to normal
regression theory also; the correlation of two jointly normal
distributions has a skewed distribution (unless ρ = 0).

2.10 EXERCISES

Where bootstraps of 1,000 or more are involved, students should do the work in
individual spreadsheets unless their computer has a large memory. Otherwise
you  are likely to get an “out of memory” notice when you try to copy from one
workbook to another, etc. Make two worksheets for each such exercise, one
summarizing results and the second containing the calculations. The practical
approach is to save only the first 20 lines or so, when you have finished an
exercise. You then can likely consolidate all results in one workbook to hand
in. It is important to have your exercises in a workbook, as that makes it
possible to try to find out where you went wrong if necessary. IF YOU WANT
TO LEARN TO BOOTSTRAP IN EXCEL, IT IS ESSENTIAL TO DO THE
EXERCISES! The exercises are more or less interlocking so you will need to do
most of them. If you do, you should have a pretty fair notion of how to
bootstrap. The bootstrapping technique will be used for examples and exercises
in the rest of the book, so you need to know how to do it. If you know a
programming language, you can certainly do the exercises that way, and
provide summary tables and graphs to turn in. An Appendix provides
bootstrapping programs  as EXCEL “macros” and you can check results with
those programs, but you should do the exercises as outlined in Chapters 2 and 3,
and then check them with the programs if you want to do so. If you have not
used the “graph wizard” function before, you may have trouble getting
appropriate x-values on the graph. The trick is to first make an “xy
(scatterplot)” graph, finish it and then open the CHART menu and select the
bar chart. This changes the xy plot to a bar chart with the appropriate x-axis
labels.

2.10.1 Set up an EXCEL worksheet to carry out bootstrap calculations on the data
of Fig. 2.1, following the approach outlined in Table 2.1. Use 200 bootstraps. Set
up the worksheet to use manual calculation as indicated in Example 2.1 and
make 30 runs, recording the mean of the 200 bootstrap means in a separate
column (you need to either type in the observed values as you repeatedly run
the bootstrapping or use the “PASTE SPECIAL” command). Also calculate the
variance of each group of 10 bootstrap samples, listing it at the bottom of the
set along with the sum and mean of each set of 10. Record your results on a
spreadsheet and save it for the next exercise. Calculate s.e.(boot) of eq. (2.1).

The explanation of using HLOOKUP in EXCEL manuals may not be very helpful.
The sample below might help. This is part of a worksheet set up as indicated
above and the HLOOKUP string displayed in the header of the worksheet is as
follows, referring to the bootstrap sample in the box in the body of the table. It
commands EXCEL to lookup the random number in cell D3 (which is 3) in the
table of the first two rows (designated in the command as the array $D1:$M$2
and shown in boldface type below) and find the corresponding item in the
second row of the array table (which is 203).
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=HLOOKUP(D3,$D$1:$M$2,2,FALSE)
A                     B                C           D       E        E      G    H       I      J        K     L     M
EXERCISE 1 2 3 4 5 6 7 8 9 1 0
2.10.1 ORIGINAL DATA 1 3 1 0 6 2 0 3 1 3 1 1 6 0 8 6 7 6 1 1 1 3 0 1

1 3 9 8 3 7 4 9 1 1 5 10 5 5
2 2 4 5 2 6 3 9 1 8 7 6 6 9
3 7 4 1 6 3 2 3 1 3 6 6 1 1
4 5 8 3 5 9 8 10 7 4 7 10 10 8

RANDOM NOS. 5 5 2 3 10 10 4 3 8 9 4 5 9 5
6 8 3 9 4 5 10 4 3 10 6 9 3 8
7 8 2 8 8 7 9 1 10 6 10 9 8 3
8 2 5 1 10 5 5 9 2 1 4 7 1 3
9 7 8 10 3 6 5 2 3 5 10 4 8 5

10 6 9 2 1 5 6 6 7 6 4 1 8 8

1 203 11 61 203 67 131 11 13 13 160 301 160 160
2 106 131 160 106 8 203 11 13 61 67 8 8 11
3 67 131 13 8 203 106 203 13 203 8 8 13 13

BOOTSTRAP 4 160 61 203 160 11 61 301 67 131 67 301 301 61
SAMPLES 5 160 106 203 301 301 131 203 61 11 131 160 11 160

6 61 203 11 131 160 301 131 203 301 8 11 203 61
7 61 106 61 61 67 11 13 301 8 301 11 61 203
8 106 160 13 301 160 160 11 106 13 131 67 13 203
9 67 61 301 203 8 160 106 203 160 301 131 61 160

10 8 11 106 13 160 8 8 67 8 131 13 61 61
BOOTSTRAP 1 2 3 4 5 6 7 8 9 10 11 12 13

SUM 999 981 1132 1487 1145 1272 998 1047 909 1305 1011 892 1093
MEAN 99.9 98.1 113 149 115 127 99.8 105 90.9 131 101 89.2 109

The second item in the column of bootstrap samples (just below the item in a
box) has the following command:
=HLOOKUP(D4,$D$1:$M$2,2,FALSE)
which instructs EXCEL to find the random number in the position D4
(remember that the first row of the table above, with letters A, B, C etc. is NOT
part of a worksheet but merely gives locations in that worksheet). This random
number is 2 and thus EXCEL picks out the second item in the array which is
106. The third command is as follows, and EXCEL uses the random number in D5
to pick out the 7th item in the array which is 67.
=HLOOKUP(D5,$D$1:$M$2,2,FALSE)
You may need to exert considerable patience and some trial and error efforts to
get EXCEL to do the job if you have not worked much with it before, but once
you have the hang of it, things should go along o.k.

2.10.2  Copy the original data and the run of 30 means obtained above to
another spreadsheet, and compute means and variances for the two sets of data
(the original data, 10 observations and the 30 means) using the built-in
functions, i.e., AVERAGE() and VAR().  Make  histograms of these means and
variances from a run of the spreadsheet made in Exercise 2.10.1 (that is, make
histograms of the 200 bootstrap means and variances on that sheet). Show how

seboot of eq.(2.1) compares with the variance of the original 10 observations
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and the variance of the 30 means. Is there any advantage to using
bootstrapping in this example?

2.10.3  Repeat the die-tossing example of Section 2.3 using EXCEL. Calculate the
expected values. Explain the difference between a p.d.f. and an empirical
probability distribution. Which is which in this example? What is the
difference between a cumulative distribution function and a distribution
function? State the distribution function for this example (as an equation).

2.10.4  Carry out the parametric bootstrap calculations for Example 2.3 using an
EXCEL spreadsheet (the approach is given in Example 2.2). Use 1,000 bootstraps,
and use VLOOKUP(). It is easier to use for larger numbers of bootstraps.
Calculate confidence limits and prepare a graph of the frequency distribution
to compare with Fig. 2.7. Use HISTOGRAM to obtain the frequency distribution.
Be sure to “freeze” the appropriate cell references using $R$C  so that the x-
values remain the same in calculating the bootstraps. You can obtain
confidence limits simply by ordering the slopes using the SORT function.

2.10.5   Bootstrap the data of  Example 2.2, using 1,000 bootstraps and computing
the correlation coefficients rather than the slopes. You can start by copying
the bootstrap calculation of Exercise 2.10.4 to a new spreadsheet and inserting
the x and y values in this sheet. One can often convert a bootstrap operation to
a new data set this way, so it is wise to keep examples on hand. Make a
frequency distribution of z (eq.(2.9). Does this look like a normal distribution
as assumed in calculating confidence limits under the usual theory?

2.10.6  How would you obtain bootstrap confidence limits on α  in Example 2.3?
Calculate the 95% bootstrap confidence limits using 1000 bootstraps. Run the
EXCEL regression on the data and compare the confidence limits on α  with
those you obtained from bootstrapping.

2.10. 7  The regression bootstrap of Example 2.3 used parametric bootstrapping
in which deviations from a model fitted to the original data are bootstrapped.
The first example of bootstrapping given (Example 2.1) might thus be called
"nonparametric" bootstrapping. Try this approach on the data of Example 2.3.
Remember that you need to bootstrap pairs of observations. This may require
setting up the slope calculations in blocks of 10, but careful use of the
$function will facilitate copying down in blocks of 10 without too much
trouble. Use B = 200, and make a frequency plot of the calculated slopes and
compare it with the frequency diagram of Exercise 2.10.4. . This should
illustrate why parametric bootstrapping is preferred for small samples in
regression studies. This exercise can be time-consuming and illustrates why a
programming approach is needed. Try using the program in the Appendix and
run 2,000 bootstraps with it.

2.10.8  Referring to the data of Example 2.3, calculate bootstrap 95% confidence
limits on the variance about regression as shown in eq. (2.5).  Compare your
results with the value you get from a regression calculation on the original
data of Example 2.3. Report your results on  a worksheet (along the lines of
those used thus far in the exercises above). You can use the results of Exercise
2.10.6 as a starting point adding on columns containing the sum-of-squares
calculation and adding these up to get a variance estimate.
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